Changes in the kinase expression panel of K562 human leukemia after Avemar treatment.

Sub-category: Tyrosine Kinase Inhibitors

Category: Developmental Therapeutics: Molecular Therapeutics

Meeting: 2007 ASCO Annual Meeting

Abstract No: 14143

Citation: Journal of Clinical Oncology, 2007 ASCO Annual Meeting Proceedings Part I. Vol 25, No. 18S (June 20 Supplement), 2007: 14143

Author(s): A. Telekes, E. Rásó

Abstract: Background: The positive effect of the wheat germ extract Avemar has already been proved in cancer. Compared to the control group significantly longer survival times were achieved in both in vivo experiments and clinical studies. Inhibition of cell growth was also detected in K562 human leukaemia cell line in vitro. Avemar given p.o. (3 g/kg) resulted in significant increase of the survival time compared to the control group (p<0.005 Mann-Whitney) in i.v. implanted K562 xenograft model, which was practically the same as the effect of Gleevec treatment. Since, the mechanism(s) of action of Avemar is still not properly characterized a kinase expression panel in K562 in vitro model was examined.

Methods: K562 cells (8x10^5 cell/ml), were treated with Avemar (500 μg/ml) and mRNS from 3-3 parallel samples and their appropriate controls were isolated 24, 48 hours after the treatment and 24 hours after washing the cells previously treated with Avemar for 48 hours. To determine the kinase expression pattern Kinase OpenArray™ plates were used, having over 500 kinase genes with controls in quadruplicates in each plate. Changes in expression was declared if the average value was over 1 (2-fold change in mRNA copy number) and the standard deviation was relatively small (2xSTDEV = AVERAGE).

Results: We have found 16 kinases which expression has temporary or durative (maintained for 24 hour after washing) decreased (e.g.: CCL2, ABR, FLT1, EphB6, TGFa) and 30 which expression has increased (e.g.: CPT1B, IRE1, ITK, RON, LTK, EphB2, FASTK).

Conclusions: Our result demonstrated that many of the kinases which expression was altered by Avemar treatment is known to participate in cell cycle, migration, apoptosis and signal transduction. Thus, our results might shed light on the main mechanism(s) of action of Avemar and raise the possibility to identify the active substance(es) of this natural extract.

Other Abstracts in this Sub-Category

1. Activation of the AMPK regulated metabolic stress response by a small molecule HER2/EGFR tyrosine kinase inhibitor protects cardiac myocytes from apoptotic stimuli.
 - Category: Developmental Therapeutics: Molecular Therapeutics - Tyrosine Kinase Inhibitors

2. Correlation between the EGFR intron 1 CA dinucleotide repeat and skin toxicity in lung cancer patients treated with erlotinib.
 - Category: Developmental Therapeutics: Molecular Therapeutics - Tyrosine Kinase Inhibitors

3. Correlative study of EGFR mutations or protein expressions of EGFR, phosphorylated EGFR, HER2, phosphorylated HER2 and IGF1R with gefitinib sensitivity in patients with non-small cell lung cancer: Results of West Japan Thoracic Oncology Group trial (WJTO).
 - Category: Developmental Therapeutics: Molecular Therapeutics - Tyrosine Kinase Inhibitors

More...

Abstracts by A. Telekes

1. Avemar inhibits the growth of mouse and human xenograft mammary carcinomas comparable to endocrine treatments.

Meeting: 2007 ASCO Annual Meeting Abstract No: 14143 First Author: A. Telekes
Category: Developmental Therapeutics: Molecular Therapeutics - Tyrosine Kinase Inhibitors

More...